The Transcension Hypothesis: Sufficiently Advanced Civilizations Invariably Leave Our Universe.
The transcension hypothesis, also known as the developmental singularity hypothesis proposes that a universal process of evolutionary development guides all sufficiently advanced civilizations increasingly into inner space, the domain of very small scales of space, time, energy and matter (STEM), and eventually, to a black-hole-like destination, censored from our observation. If constrained transcension operates on all advanced civilizations as they develop, and if this process leads them, with rare exception, to enter inner space or black-hole-like domains, this would explain Enrico Fermi’s curious paradox, the question of why we have not seen signs of intelligence in our own galaxy, even though Earth has likely developed intelligent life one to three billion years later than other Earth-like environments closer to our galactic core. This impressively long period of prior evolutionary development provides plenty of time for messages, automated probes, or other signs of galactic intelligence to have arrived from any single advanced civilization that chooses an expansionist program.
If we could witness the evolutionary development of two parametrically identical universes from birth to death we would expect to see huge differences in terms of the creation of internal structure, the evolution of life, emergence of intelligence and the application of technology within such civilisations whilst at the same time observing deep commonalities in terms of historic processes, as well as biological, cultural and technological convergence. Species convergence in the sense of a non-identical, dynamic progression towards universal milestones is of critical importance to Smart’s next suggestion; rather than advanced civilisations seeding the galaxy in a process of expansion, evolutionary development guides intelligent life increasingly into inner space and what is referred to as STEM, small scales of space, time, energy and matter that eventually lead to black hole like domains. The reversal of scale from the very large stellar engineering projects predicated on the expansionist model to the very small atomic and subatomic realms offered by the transcension model would certainly explain why no evidence so far exists of galactic intelligence despite the relative lateness of humanity’s arrival on the scene, particularly as the universe seems to many cosmologists as a life friendly environment.
There are a number of reasons why black holes would seem to be an attractive environment for STEM density and general learning systems. Black holes may provide the ultimate computing environment by removing the energy cost of information transfer. This would solve the ‘memory wall’ that exists in contemporary computing and allow instantaneous communication and computation from any point to point in the event horizon. Also, bizarrely due to gravitational time dilation, the closer you approach a black hole the slower non-local time becomes to the point that near instantaneous forward time travel with respect to the rest of the universe would take place. This means that any miniaturised civilisation situated directly above the event horizon of a black hole would witness the universe speed through its processes in the literal blink of an eye. Galaxies such as the Milky Way and Andromeda would collide and merge, and if our current theories are sound, so would all black holes in their local gravity wells. In fact according to some, all the matter in our universe will one day end up inside merged black holes. Entering a black hole without losing structural information would therefore be a considerable challenge to any advanced intelligence.
In this scenario, each universal civilization may be in the process of turning into something analogous to a seed, a developmental structure that packages its evolutionary history and experience in a way that transcends our apparently finite and potentially dying universe, just as seeds transcend finite and dying biological bodies. An equivalent biological analogy for our universe itself might be an ovarian follicle, a developmental structure that assembles many potential seeds and puts them in a competitive selective system to generate the best new seed. While evolutionary process is best characterized by divergence and speciation, the hallmark of developmental processes is convergence and unification. A planet of postbiological life forms, if subject to universal development, may increasingly look like one integrated organism, and if so, its entities will be vastly more responsible, regulated, and self-restrained than human beings. If developmental immunity exists, planetary transitions from life to intelligent life, and from intelligent life to postbiological life should be increasingly high-probability.